之所以说”当下的人工智能技术,只有高质量输入,才能得到高质量输出”,主要有以下几个原因:
数据驱动的本质 现有的人工智能技术,尤其是深度学习技术,高度依赖于训练数据的质量。模型的学习能力、推理能力都来源于训练数据。如果输入的训练数据质量不佳(含噪声、偏差、覆盖面不全等),模型很难学习到有效的模式,自然也难以产出高质量的输出结果。
无监督学习的局限性 目前主流的人工智能方法大多采用无监督学习的范式,通过自主发现数据中的模式和规律进行建模。这种方式对训练数据的质量要求更高,因为只有高质量数据才能真实反映潜在的知识模式。低质量数据往往会导致模型学习到错误规律。
缺乏逻辑推理能力 现有人工智能系统缺乏对因果逻辑的深刻理解能力,无法对输入数据的合理性和正确性进行有效判断,从而依赖于训练数据的质量来保证输出质量。
黑箱特性和可解释性不足 深度学习模型本质上是一个黑箱,我们难以判断其内在机制是否符合逻辑,也无法完全解释模型输出的依据和原因。因此只能最大程度地保证输入质量来期望获得理想输出。
显式知识和常识缺失 大多数人工智能模型缺乏对现实世界的显式知识和常识理解能力,无法对输入数据中的明显错误或矛盾进行识别和纠正,从而也需要高质量的输入数据作为前提。
总的来说,当前人工智能技术在自主学习和逻辑推理能力上还有不足,更多依赖于训练数据的质量。只有保证高质量的输入,才能最大限度地利用人工智能系统的优势,获得令人满意的输出结果。这也是人工智能领域需要继续改进的重要方向之一。