如何做Agent,请举例说明(如何做早餐简单又好吃)

以下是关于如何做 Agent 的详细说明及举例:

一、基本框架

Agent 的基本框架可以概括为“Agent = LLM + 规划 + 记忆 + 工具使用”。其中,大模型 LLM 充当 Agent 的“大脑”。

二、规划(Planning)

主要包括子目标分解、反思与改进。子目标分解能将大型任务拆解为较小可管理的子目标,便于处理复杂任务。反思和改进则可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,以提升最终结果的质量。

三、记忆(Memory)

分为短期记忆和长期记忆。短期记忆将所有的上下文学习视为利用模型的短期记忆来学习;长期记忆提供了长期存储和召回信息的能力,通常通过利用外部的向量存储和快速检索来实现。

四、工具(Tools)

五、智能体的类型

智能体可以根据其复杂性和功能分为以下几种类型:

简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,根据温度传感器的输入直接打开或关闭加热器。 基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并据此采取行动。比如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,有明确的目的地,并计划路线以避免障碍。 效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。金融交易智能体就是一个例子,它会根据不同市场条件选择最优的交易策略。 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。强化学习智能体通过与环境互动不断学习最优策略。

六、从产品角度思考 Agent 设计

以历史新闻探索向导为例,其身份是历史新闻探索向导,性格是知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析。为使角色更生动,可为其设计简短的背景故事,比如曾是一位历史学家,对世界重大历史事件了如指掌且充满热情,愿意分享知识。写好角色个性需考虑角色背景和身份、性格和语气、角色互动方式以及角色技能等方面。

例如吴恩达通过开源项目 ChatDev 举例,可让一个大语言模型扮演不同角色,如公司 CEO、产品经理、设计师、代码工程师或测试人员,这些 Agent 会相互协作,共同开发一个应用或复杂程序。

0
分享到:
没有账号? 忘记密码?