RAG到底是什么(Ra是啥单位)

RAG(Retrieval-Augmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构。它旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。

具体来说:

利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。 当需要依靠不包含在大模型训练集中的数据时,可通过 RAG 实现。其过程包括文档加载(从多种不同来源加载文档)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块进行嵌入转换成向量形式并存储到向量数据库)、检索(通过某种检索算法找到与输入问题相似的嵌入片)。

LangChain 是一个用于构建高级语言模型应用程序的框架,它和 RAG 的关系在于:RAG 是一种结合了检索(检索外部知识库中相关信息)和生成(利用 LLM 生成文本)的技术,能够为 LLM 提供来自外部知识源的附加信息,使得 LLM 在应对下游任务时能够生成更精确和上下文相关的答案,并减少 LLM 的幻觉现象。而 LangChain 的设计主张集中在模块化组件上,为使用 LLM 提供行为抽象和实现集合,允许开发人员构造新链或实现现成的链。

0
分享到:
没有账号? 忘记密码?