AIGC动态欢迎阅读
,同样适用于Scaling Law
关键字:词表,大小,模型,参数,报告文章来源:机器之心
内容字数:0字内容摘要:
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com第一作者陶超凡(Chaofan Tao)是香港大学(HKU)的四年级博士生,导师是黄毅教授和罗平教授。他本科毕业于电子科技大学的英才荣誉学院。他的研究论文发表在ACL、EMNLP、ECCV、NeurIPS、ICML、T-NNLS等期刊和会议上。他获得了 ACL 2022 年的杰出论文奖。陶超凡的研究兴趣包括:1) 高效机器学习与模型加速:以低成本对模型进行高效调优和部署。2) 支持多种任务的通用大型模型,涵盖不同模态。
本文是一篇发表在 NeurIPS 2024 上的论文,单位是香港大学、Sea AI Lab、Contextual AI 和俄亥俄州立大学。论文主要探讨了大型语言模型(LLMs)的词表大小对模型性能的影响。论文:https://arxiv.org原文链接:NeurIPS 2024 | 大模型的词表大小,同样适用于Scaling Law
联系作者
文章来源:机器之心
作者微信:
作者简介: