AIGC动态欢迎阅读
与应用实践 | 公开课预告
关键字:模型,技术,架构,智能,信息
文章来源:智猩猩AGI
内容字数:0字内容摘要:
随着大语言模型的兴起,其在处理自然语言任务上展现出了强大的能力,但也逐渐暴露出一些问题。大语言模型虽然能够生成连贯且富有逻辑的文本,但在某些情况下可能会出现“幻觉”,即生成不准确或无根据的内容。而且,大语言模型对于最新的、特定领域的专业知识的掌握可能存在滞后性。
目前主要有两种途径解决以上问题:一是微调,二是RAG。微调虽能使模型“学会”私域知识,但是,模型微调工作复杂,从数据准备、算力资源、微调效果到训练时间,都面临诸多挑战,用新数据随时微调不切实际,每月能更新一次已属理想状况。RAG 则为生成式模型与外部世界互动提供了颇具前景的解决办法。
RAG的全称是Retrieval-Augmented Generation,中文翻译为检索增强生成,是一个为大模型提供外部知识源的概念。通过RAG,可以使大语言模型生成准确且符合上下文的答案,同时能够减少“幻觉”。
RAG的主要功能类似于搜索引擎,能够找出与用户提问最相关的知识或对话历史,并结合原始提问创建内容丰富的 prompt,引导模型生成准确的输出。RAG还可分为5个基本流程:知识文档的准备、嵌入模型(embedding model)、向量原文链接:合合信息研发总监常扬:大模型RAG技术架构与应用实践 | 公开课预告
联系作者
文章来源:智猩猩AGI
作者微信:
作者简介: