MLP 的时代结束了?全新神经网络架构 KAN 横空出世,MIT华人一作!(神经网络mse一般多少合适)

AIGC动态欢迎阅读

原标题:MLP 的时代结束了?全新神经网络架构 KAN 横空出世,MIT华人一作!

关键字:函数,定理,侵权,模型,表示

文章来源:算法邦

内容字数:11262字

内容摘要:

文章转载自公众号:AI科技大本营,本文只做学术/技术分享,如有侵权,联系删文。

多层感知器(MLP, Multilayer Perceptron)作为人工神经网络的一个基本架构,一直在历史上扮演着至关重要的角色。MLP 可以被视为深度学习领域的“基石”或“基础构件”,它的意义在于:

基础模型:MLP 作为最早被广泛研究和应用的神经网络模型之一,是许多复杂深度学习架构的起点和基础。它奠定了神经网络能够解决非线性问题的基础,是理解更高级神经网络结构的入门。

功能强大:虽然结构相对简单,但 MLP 已经能够处理复杂的分类和回归任务,展示了神经网络的强大适应能力和学习能力,为后续深度学习的发展铺平了道路。

理论与实践结合:MLP 不仅在理论上证明了神经网络的普遍近似能力,而且在实践中也取得了显著的性能表现,特别是在早期的手写数字识别等机器学习应用当中。

但 AI 发展到今天,MLP 几乎一点没变,人类的需求却越来越多了。MLP 在庞大的需求压力下暴露出了一个又一个缺点:可解释性和交互性不足、处理大尺寸图像的时候计算复杂且有过拟合问题、缺乏灵活性和适应性、自动特征提取方面的能力较弱……

4 月

原文链接:MLP 的时代结束了?全新神经网络架构 KAN 横空出世,MIT华人一作!

联系作者

文章来源:算法邦

作者微信:allplusai

作者简介:智猩猩矩阵账号之一,聚焦生成式AI,重点关注模型与应用。

0
分享到:
没有账号? 忘记密码?