训练大语言模型的过程主要包括以下几个步骤:
无监督学习:模型通过分析大量文本数据,学习到语言的基本结构和常识,具备文本补齐能力而非直接回答问题。模型将人类的知识通过向量化的方法转换,从而获得基础的语言模型。 清洗出好的数据:通过引入人类的评价标准(奖励函数)和处理特定的格式要求,进一步优化模型的输出以符合人类的期望。这包括处理文化、道德等方面的细节,以确保模型的输出更加贴近人类的价值观。 指令微调:在此阶段,模型被训练以理解并执行具体指令,如翻译文本,从而能够回答问题。这一阶段涉及的数据输入量相对于无监督学习阶段有所减少。 对齐过程:通过引入人类的评价标准(奖励函数)和处理特定的格式要求,进一步优化模型的输出以符合人类的期望。这包括处理文化、道德等方面的细节,以确保模型的输出更加贴近人类的价值观。 排序:通过引入人类的评价标准(奖励函数)和处理特定的格式要求,进一步优化模型的输出以符合人类的期望。这包括处理文化、道德等方面的细节,以确保模型的输出更加贴近人类的价值观。总的来说,训练大语言模型是一个复杂而昂贵的过程,需要大量的计算资源和时间。