关注并星标
从此不迷路
计算机视觉研究院
公众号ID|ComputerVisionGzq
学习群|扫码在主页获取加入方式
计算机视觉研究院专栏
作者:Edison_G
任意方向的目标检测是一项具有挑战性的任务。 一、背景 目标检测是计算机视觉中的一项基本任务,许多研究人员已经应用水平边界框来定位图像中的物体。 水平边界框的使用可以使候选区域的表示更加简洁直观。在许多基于深度学习的方法中,往往需要大量标记样本来训练目标检测器模型,使用轴平行标记框可以大大提高标记效率,快速获取大量标记样本。 此外,水平边界框涉及的参数较少,简化了检测模型的训练过程。因此,在大多数目标检测方法中,使用水平边界框来表示遥感图像中目标的大致范围,如下图所示。三、新框架
新提出的旋转检测器框架如上图所示。网络基于RetinaNet框架。图中标记为C2、C3、C4的特征图是由深度卷积神经网络提取的。该方法的总体步骤如下:首先利用特征提取网络对遥感图像中的特征进行提取,利用NAS-FPN对提取的特征进行融合,得到不同尺度的特征图。然后,使用长边定义方法来表示旋转检测框,并在框回归任务中使用二进制编码标记技术将角度回归问题转化为角度分类问题。下面详细描述该方法中的一些重要结构。
NAS-FPN
在NAS-FPN中,最重要的结构是由特征图节点集合、操作池和搜索终止条件组成的合并单元结构。下图简要描述了特征图的搜索过程。
1)从特征图节点集中随机选择一个特征图作为输入之一。初始特征图节点集包含五个尺度的特征图,表示为 {C1,C2, C3, C4, C5}。
2)从特征图节点集中随机选择另一个特征图作为另一个输入。
3)选择输出特征图的分辨率。
4)在操作池中选择一个操作对(1)(2)中选择的特征图节点进行操作,产生与输出特征图分辨率相同的特征图,并将该特征图加入到特征图节点集合中选择。
5) 循环重复上述步骤。搜索的终止条件是生成五个与初始特征图分辨率相同的特征金字塔网络,记为{P1, P2, P3, P4, P5}。
ROTATION DETECTION FRAME
典型的角度编码方法有三种,包括两种不同角度范围的五参数方法和一种八参数方法。详细情况如下:
角度范围为90°的五参数法(OpenCV定义法):其示意图如上图所示。该定义法包含五个参数[x,y,w,h,θ]。其中,x和y为旋转坐标系的中心坐标,θ为旋转坐标系与x轴的锐角,逆时针方向指定为负角,因此角度范围为[−90° , 0); 旋转框的宽度w为旋转框所在的边角,旋转框的高度h为另一边。
180°角范围的五参数法
八参数法
八参数法:该定义方法示意图如上图所示,该定义方法包含8个参数[a1,a2,b1,b2,c1,c2,d1,d2], 定义的左上角为起点,其余点按逆时针顺序排列。旋转坐标系的表示不限于上述三种方法,旋转坐标系其余部分的表示可以通过上述三种方法的变换得到。
ANGLE CODING METHOD
90°范围的五参数定义方法的问题
八参数四边形定义方法的问题
角度编码方法:
四、实验及可视化
实验环境
DOTA数据集上的性能比较

转载请联系本公众号获得授权

计算机视觉研究院学习群等你加入!
ABOUT
计算机视觉研究院
计算机视觉研究院主要涉及深度学习领域,主要致力于目标检测、目标跟踪、图像分割、OCR、模型量化、模型部署等研究方向。研究院每日分享最新的论文算法新框架,提供论文一键下载,并分享实战项目。研究院主要着重”技术研究“和“实践落地”。研究院会针对不同领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!往期推荐
?
双尺度残差检测器:无先验检测框进行目标检测(附论文下载)
Fast YOLO:用于实时嵌入式目标检测(附论文下载)
Micro-YOLO:探索目标检测压缩模型的有效方法(附论文下载)
目标检测干货 | 多级特征重复使用大幅度提升检测精度(文末附论文下载)
多尺度深度特征(下):多尺度特征学习才是目标检测精髓(论文免费下载)
多尺度深度特征(上):多尺度特征学习才是目标检测精髓(干货满满,建议收藏) ICCV2021目标检测:用图特征金字塔提升精度(附论文下载)
CVPR21小样本检测:蒸馏&上下文助力小样本检测(代码已开源)
半监督辅助目标检测:自训练+数据增强提升精度(附源码下载)
目标检测干货 | 多级特征重复使用大幅度提升检测精度(文末附论文下载)
目标检测新框架CBNet | 多Backbone网络结构用于目标检测(附源码下载)
CVPR21最佳检测:不再是方方正正的目标检测输出(附源码)
Sparse R-CNN:稀疏框架,端到端的目标检测(附源码)