Prompt 调优是对给大模型输入的原始输入进行优化和改进的过程,具有以下作用和特点:
帮助模型更好地理解用户需求,并按照特定模式或规则进行响应。 可以设定特定的角色或场景,如“假设你是一位医生,给出针对这种症状的建议”,后续对话将基于此设定展开。 有多种有趣的玩法,例如要求模型按照思维链(cot)的思路逻辑回答,或者让模型按照特定格式(如 json)输出,使模型成为特定的输出器。 提示开发生命周期包括设计初步提示,即制定一个初步的提示,概述任务定义、良好响应的特征以及所需的上下文,并添加规范输入和输出的示例作为改进的起点。 测试提示时要根据测试用例评估模型的响应与预期输出和成功标准是否一致,使用一致的评分标准,如人工评估、与答案标准比较或基于评分标准的模型判断等,以系统性评估性能。 自动提示工程方面,有一些相关的重要主题和关键论文,如使用离线逆强化学习生成与查询相关的提示、引入使用大语言模型优化提示的思想、提出基于梯度引导搜索自动创建各种任务提示的方法、作为轻量级微调替代方案的为自然语言生成任务添加可训练连续前缀、提出通过反向传播学习软提示的机制等。