重排通常是通过专门的 Rerank 模型来实现的。例如在一些研究中,如基于 Notion 和 Coze 打造个人知识问答系统,提到若不考虑速度和成本,最好的语义相关度计算算法就是 LLM 本身,所以直接使用 LLM 来做打分和重排。在大模型 RAG 问答的行业最佳实践中,如 Baichuan 案例,对于 Rerank 和 selection 的作用范围存在一定的不确定性,合理猜测是对全部 Material 进行重排序和筛序。
重排通常是通过专门的 Rerank 模型来实现的。例如在一些研究中,如基于 Notion 和 Coze 打造个人知识问答系统,提到若不考虑速度和成本,最好的语义相关度计算算法就是 LLM 本身,所以直接使用 LLM 来做打分和重排。在大模型 RAG 问答的行业最佳实践中,如 Baichuan 案例,对于 Rerank 和 selection 的作用范围存在一定的不确定性,合理猜测是对全部 Material 进行重排序和筛序。