智能体的感知能力(智能感知体系)

智能体的感知能力包括以下方面:

听觉输入:能够利用 LLM 作为控制中心,调用现有的音频处理模型库来感知音频信息。通过音频频谱图的转换,将音频信号有效编码,实现对音频信息的理解和处理。 文本输入:通过文本输入与人类交流,能理解用户文本中明确的内容以及隐含的信念、愿望和意图。利用强化学习技术,能感知并推断用户的偏好,实现个性化和准确的回应。此外,具有零样本学习能力,能处理全新任务,无需针对特定任务微调。 视觉输入:为智能体提供丰富的环境信息,包括物体的属性、空间关系和场景布局。能通过生成图像的文本描述(图像标题)来理解图像内容。Transformer 模型的应用使其能直接对视觉信息进行编码和整合,提高视觉感知能力。通过在视觉编码器和 LLM 之间添加可学习的接口层,能更好地对齐视觉和语言信息。 其他输入:除了文本、视觉和听觉输入,智能体还可能配备更丰富的感知模块,如触觉、嗅觉以及对环境温湿度的感知能力。指向指令的引入使得智能体能够通过用户的手势或光标与图像交互。此外,通过集成激光雷达、GPS、IMU 等硬件设备,智能体能够获得更全面的三维空间和运动感知能力。感知模块的设计初衷在于极大地拓展智能体的感知视野,融合多种模态,使其能够以更接近人类的方式感知和理解周围世界。

0
分享到:
没有账号? 忘记密码?