最大似然估计是估计分布的一种直接方法。先假设分布的形式,如假设 x 来自多元高斯分布,其中高斯分布的维度和图片的像素个数一致,待定参数如 。此时似然估计函数为 ,通过梯度下降或公式推导求解出最佳参数,从而求得分布。但这种方法有明显弊端,一是形式未知,需要丰富的领域知识才能确定分布形式,对于复杂问题只有上帝才知道分布的参数化表达式;二是参数量的空间太大,像 ImageNet 这种情况,是 150528 元高斯分布,需要海量数据才能估计准确。
最大似然估计是估计分布的一种直接方法。先假设分布的形式,如假设 x 来自多元高斯分布,其中高斯分布的维度和图片的像素个数一致,待定参数如 。此时似然估计函数为 ,通过梯度下降或公式推导求解出最佳参数,从而求得分布。但这种方法有明显弊端,一是形式未知,需要丰富的领域知识才能确定分布形式,对于复杂问题只有上帝才知道分布的参数化表达式;二是参数量的空间太大,像 ImageNet 这种情况,是 150528 元高斯分布,需要海量数据才能估计准确。