模型微调包括以下方面:
使用微调模型:当作业成功时,fine_tuned_model 字段将填充模型名称,完成后可能需几分钟准备好处理请求,若超时可能仍在加载中,可几分钟后重试。可通过将模型名称作为 model 完成请求的参数传递来开始发出请求,如 OpenAI 命令行界面、cURL、Python、Node.js 等方式。同时,可继续使用如 temperature、frequency_penalty、presence_penalty 等所有其他完成参数对微调模型进行请求。 Step4: 加载微调模型:基于 LoRA 微调的模型参数见基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。通过PEFT加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 创建微调模型:假设已准备好训练数据。使用 OpenAI CLI 开始微调工作,需明确从哪里 BASE_MODEL 开始的基本模型的名称(ada、babbage、curie 或 davinci),可使用后缀参数自定义微调模型的名称。运行命令会进行上传文件、创建微调作业、流式传输事件直到作业完成等操作。每个微调工作都从默认为 curie 的基本模型开始,模型选择会影响性能和成本,包括 ada、babbage、curie 或 davinci 等。开始微调作业后,可能需几分钟或几小时完成,工作可能排队,若事件流中断可恢复。此外,还可列出现有作业、检索作业状态或取消作业。