AIGC动态欢迎阅读
原标题:端到端优化所有能力,字节跳动提出强化学习LLM Agent框架
AGILE
关键字:字节跳动,人类,能力,框架,问题文章来源:机器之心
内容字数:0字内容摘要:
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
大语言模型(Large Language Models, LLMs)的强大能力推动了 LLM Agent 的迅速发展。围绕增强 LLM Agent 的能力,近期相关研究提出了若干关键组件或工作流。然而,如何将核心要素集成到一个统一的框架中,能够进行端到端优化,仍然是一个亟待解决的问题。
来自字节跳动 ByteDance Research 的研究人员提出了基于强化学习(Reinforcement Learning, RL)的 LLM Agent 框架 ——AGILE。该框架下,Agent 能够拥有记忆、工具使用、规划、反思、与外界环境交互、主动求助专家等多种能力,并且通过强化学习实现所有能力的端到端训练。尤其值得注意的是,AGILE 框架允许 Agent 在不原文链接:端到端优化所有能力,字节跳动提出强化学习LLM Agent框架AGILE
联系作者
文章来源:机器之心
作者微信:
作者简介: