AIGC动态欢迎阅读
原标题:TPAMI 2024 | 计算机视觉中基于图神经网络和图Transformers的方法
和最新进展
关键字:神经网络,视觉,任务,方法,计算机
文章来源:机器之心
内容字数:0字内容摘要:
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com本篇综述工作已被《IEEE 模式分析与机器智能汇刊》(IEEE TPAMI)接收,作者来自三个团队:香港大学俞益洲教授与博士生陈超奇、周洪宇,香港中文大学(深圳)韩晓光教授与博士生吴毓双、许牧天,上海科技大学杨思蓓教授与硕士生戴启元。
近年来,由于在图表示学习(graph representation learning)和非网格数据(non-grid data)上的性能优势,基于图神经网络(Graph Neural Networks,GNN)的方法被广泛应用于不同问题并且显著推动了相关领域的进步,包括但不限于数据挖掘(例如,社交网络分析、推荐系统开发)、计算机视觉(例如,目标检测、点云处理)和自然语言处理(例如,关系提取、序列学习)。考虑到图神经网络已经取得了原文链接:TPAMI 2024 | 计算机视觉中基于图神经网络和图Transformers的方法和最新进展
联系作者
文章来源:机器之心
作者微信:
作者简介: