AIGC动态欢迎阅读
原标题:牛津剑桥「投毒」AI失败9次登Nature封面,引爆学术圈激辩!AI训AI能否打破崩溃魔咒?
关键字:数据,模型,人类,研究者,误差文章来源:新智元
内容字数:0字内容摘要:
新智元报道编辑:Aeneas 好困
【新智元导读】牛津剑桥的9次投毒导致模型崩溃的论文,已经遭到了诸多吐槽:这也能上Nature?学术圈则对此进行了进一步讨论,大家的观点殊途同归:合成数据被很多人视为灵丹妙药,但天下没有免费的午餐。AI时代,数据就是新的石油。全球人类数据逐渐枯竭的时代,合成数据是我们的未来吗?
最近Nature封面一篇论文引起的风波,让我们明白:重要的并不是「合成数据」,而是「正确使用合成数据」。
本周四,牛津、剑桥、帝国理工、多伦多大学等机构的一篇论文登上了Nature封面。
他们提出了AI的「近亲繁殖」问题,即如果在训练中不加区别地只用AI产生的内容,就会发生模型崩溃。
不过,让人没想到的是,论文一经刊出便引发了AI社区的大量讨论。一些人认为,问题的核心不在「合成数据」上,而是在「数据质量」上。
即使全部用的是人工数据,如果质量太差,那结果一样也是「垃圾进垃圾出」。甚至,有人觉得研究者故意采用了与实际操作不匹配的方法,实际上是在「哗众取宠」。
对此,马毅教授表示,如今我们已经走进了缺少科学思想和方法的时代——
许多研究,不过都是重新发现一些科学常识。
如何避免模原文链接:牛津剑桥「投毒」AI失败9次登Nature封面,引爆学术圈激辩!AI训AI能否打破崩溃魔咒?
联系作者
文章来源:新智元
作者微信:
作者简介: