神经网络可能不再需要激活函数?Layer Normalization也具有非线性表达!(神经网络中激活函数的作用是什么,要求不少于100字)

AIGC动态欢迎阅读

原标题:神经网络可能不再需要激活函数?Layer Normalization也具有非线性

表达!

关键字:线性,神经网络,样本,作者,能力

文章来源:机器之心

内容字数:0字

内容摘要:

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com本文作者均来自北京航空航天大学人工智能学院和复杂关键软件环境全国重点实验室黄雷副教授团队。一作倪云昊为研一学生,二作郭宇芯为大三学生,三作贾俊龙为研二学生,通讯作者为黄雷副教授(主页:https://huangleibuaa.github.io/)

神经网络通常由三部分组成:线性层、非线性层(激活函数)和标准化层。线性层是网络参数的主要存在位置,非线性层提升神经网络的表达能力,而标准化层(Normalization)主要用于稳定和加速神经网络训练,很少有工作研究它们的表达能力,例如,以Batch Normalization为例,它在预测阶段可以认为是线性变换,从表达上并未引入非线性。因此研究人员普遍认为Normalization并不能够提升模型的表达能力。

原文链接:神经网络可能不再需要激活函数?Layer Normalization也具有非线性表达!

联系作者

文章来源:机器之心

作者微信:almosthuman2014

作者简介:专业的人工智能媒体和产业服务平台

0
分享到:
没有账号? 忘记密码?