ICML2024高分!魔改注意力,让小模型能打两倍大的模型(icml2024 accept list)

AIGC动态欢迎阅读

原标题:ICML2024高分!魔改注意力,让小模型

能打两倍大的模型

关键字:注意力,模型,矩阵,动态,回路

文章来源:量子位

内容字数:0字

内容摘要:

彩云科技团队 投稿量子位 | 公众号 QbitAI改进Transformer核心机制注意力,让小模型能打两倍大的模型!

ICML 2024高分论文,彩云科技团队构建DCFormer框架,替换Transformer核心组件多头注意力模块(MHA),提出可动态组合的多头注意力(DCMHA)。

DCMHA解除了MHA注意力头的查找选择回路和变换回路的固定绑定,让它们可以根据输入动态组合,从根本上提升了模型的表达能力。

可以近似理解为,原来每层有固定的H个注意力头,现在用几乎同样的参数量和算力,可按需动态组合出多至HxH个注意力头。

DCMHA即插即用,可在任何Transformer架构中替换MHA,得到通用、高效和可扩展的新架构DCFormer。

这项工作由来自北京邮电大学、AI创业公司彩云科技的研究人员共同完成。

研究人员用在DCFormer基础上打造的模型DCPythia-6.9B,在预训练困惑度和下游任务评估上都优于开源Pythia-12B。

DCFormer模型在性能上与那些计算量是其1.7-2倍的Transformer模型相当。

多头注意力模块有何局限?大模型的scaling la

原文链接:ICML2024高分!魔改注意力,让小模型能打两倍大的模型

联系作者

文章来源:量子位

作者微信:QbitAI

作者简介:追踪人工智能新趋势,关注科技行业新突破

0
分享到:
没有账号? 忘记密码?