英特尔高管:AI模型将逐步从云端向边缘端转移

云端处理时延长、数据传输成本高,存在数据安全担忧。英特尔高级副总裁Sachin Katti表示,AI向边缘端渗透,大模型或逐步从云端向边缘端转移。
英特尔高管:AI模型将逐步从云端向边缘端转移
英特尔高级副总裁兼网络与边缘事业部总经理Sachin Katti。
“我们预计AI将更多地在边缘端部署和应用,以处理本地数据。随着时间的推移,AI模型可能会逐步从云端向边缘端转移。”7月24日,在2024英特尔网络与边缘计算行业大会上,英特尔高级副总裁兼网络与边缘事业部总经理Sachin Katti表示,当前的AI主要在云端运行,随着边缘设备在本地产生大量数据,将所有数据传输至云端的成本相当高昂,向边缘计算演进是大势所趋。
数据安全、实时性推动AI从云端走向边缘端
Sachin Katti表示,人类正处于AI辅助时代,AI帮助人类更高效地工作,在AI辅助时代之后,人类将迈入AI助手时代,“开车经过快餐店,AI智能体可以提供点餐服务,企业的工作流也可以用AI完成。在遥远的未来,我们可能会发现,智能体之间能够交互,就像人类一起合作一样,提供部门级的解决方案。”
Sachin Katti表示,今天的AI增长主要集中在云上,但向边缘计算演进是大势所趋,“过去,我们讲到的AI基本上关于机器视觉或以时间序列为基础的自动化技术。但现在的边缘AI已经从边缘的机器视觉逐步进展到大语言模型、生成式AI等的边缘应用。英特尔就要不断地提供相关能力,加速在边缘端部署生成式AI以及大语言模型。”
除了边缘数据的传输需求,数据安全、实时性是推动AI从云端走向边缘端的重要考虑。英特尔市场营销集团副总裁、英特尔中国网络与边缘及渠道数据中心事业部总经理郭威表示,一方面,企业存在将数据放在云端的担忧,另一方面,边缘计算有助于解决实时性要求。
“今年基本上我们一半以上的客户都在探索基于边缘大模型的落地解决方案。”英特尔副总裁兼网络与边缘事业部中国区总经理陈伟表示,从边缘计算的落地来看,模型规模并非越大越好,而是应该适合市场应用场景的实际需求,“边缘计算的部署需要考虑很多因素,比如时延、可实用性、微观数据的可调优化以及信息安全等。”
没有账号? 忘记密码?